\qquad
Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

What you need to know \& be able to do	Things to remember	Problem	
Characteristics of Functions	- Domain (xvalues) - Range (y-values) - Y-int (where it crosses the y axis) - X-int (where it crosses the x-axis) - Asymptote - Rate of Change - Increasing/ Decreasing - End behavior	1. Graph the funtion $f(x)=(2)^{x}-3$	What type of function is this? Domain: \qquad Range: \qquad Asymptote: \qquad RoC from $x=0$ to 1 : \qquad X-Int: \qquad Y-Int: \qquad Inc: \qquad Dec: \qquad End behavior: $\begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow- \\ & x \rightarrow \infty, f(\mathrm{x}) \rightarrow \end{aligned}$
		2. Graph the function $y=-3 x+6$	What type of function is this? Domain: \qquad Range: \qquad Asymptote: \qquad RoC from $x=0$ to 1 : \qquad X-Int: \qquad Y-Int: \qquad Inc: \qquad Dec: \qquad End behavior: $\begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow- \\ & x \rightarrow \infty, f(\mathrm{x}) \rightarrow \end{aligned}$
		3. Graph the function $f(x)=2(x-1)^{2}-3$	What type of function is this? Domain: \qquad Range: \qquad Asymptote: \qquad RoC from $x=0$ to 1 : \qquad X-Int: \qquad Y-Int: \qquad Inc: \qquad Dec: \qquad End behavior: $\begin{aligned} & x \rightarrow-\infty, f(x) \rightarrow- \\ & x \rightarrow \infty, f(\mathrm{x}) \rightarrow \end{aligned}$

$\begin{aligned} & \text { Comparing } \\ & \text { Functions } \end{aligned}$	- Starting value= Function - LInear $y=m x+b$ - Exponential $y=a b^{x}$	4. Taylor and Jordan are competing to see who can run the most during a week. On Day 1, they both run 3 miles. Taylor then increases his mileage each day by 2 miles. Jordan runs 1.5 times as many miles each day. Write the rule for the sequence that represents how many miles each runner will run in terms of days. Taylor: Jordan: Who will reach 10 miles first?	
		5. Two companies are offerir music. iTunes offers a $\$ 2$ registration fee of $\$ 100$. membership with a regis Write an equation for each iTunes: Amazon: Compare the rates of chan Which company is better if months?	ing memberships for buying a month membership with a mazon offers a $\$ 40$ a month ration fee of $\$ 60$. ompany. and the y-intercepts. ou only want 2 months? 12
Determine whether a function is even, odd, or neither	- Graphically: - A function is even when it is symmetrical about the y-axis - A function is odd if you can rotate it 180 degrees and have the same graph (it also must go through the origin) - Algebraically: - A function is even if ALL the exponents are even - A function is odd if ALL the exponents are odd - Remember constants have x^{0}-- EVEN	6. Determine whether the function is even, odd or neither. \qquad \qquad	7. $f(x)=2 x^{3}$ $f(x)=-x^{3}+x+5$ $f(x)=x^{4}+3 x$ $f(x)=x^{2}-9$

Sequences: Arithmetic and Geometric	Arithmetic - Common difference, add or subtract by the same number - $A_{n}=d n+a{ }_{0}$ OR $A_{n}=a_{1}+d(n-1)$ Geometric - Each term is multiplied by a common ratio - $A_{n}=a_{1}(r)^{n-1}$	Write the equation for the sequence 8) $12,16,20,24 \ldots$ 9) $120,60,30,15 \ldots$ 10) $21,18,15,12 \ldots$ 11) $12,24,48 \ldots$	Find the indicated term: 12) $A_{n}=6 n+5$ Find a_{11} 13) $A_{n}=1 / 2(4)^{n-1}$ Find a_{15}

The tables below each represent a different function. Use these functions to answer questions 14-19.
$\mathbf{f}(\mathbf{X})$

x	-2	-1	0	1	2
$f(x)$	9	5	1	-3	-7

$\mathbf{g (X)}$					
x	-2	-1	0	1	2
$f(x)$	0.25	1	4	16	64

$\mathbf{X}(\mathbf{X})$					
x	-2	-1	0	1	2
$f(x)$	5	3	3	5	9

\qquad 14) What is the equation of the exponential function?
\qquad 15) Be able to pick the quadratic equation from multiple choice
\qquad 16) What is the equation of the linear function?
\qquad 17) If $m(x)=g(x)-4$, what is $m(x)$?
\qquad 18) Which function has a common difference?
\qquad 19) Which function has a common ratio?

Directions: Use the graph to the right to select the best answer for questions 20-22.

20) After how many years does Park A's attendance exceed park C.
\qquad 21) Which park has the highest attendance the $8^{\text {th }}$ year?
21) When do all 3 parks have the same attendance?

Rate of Change:
23) If $k(x)=4 x+3+2$, what is the average rate of change for the interval $-2 \leq x \leq 1$?
24) What is the average rate of change over the interval $[3,7]$ for $f(x)=(x-3)^{2}+4$.
25) Find the rate of change for $\boldsymbol{g}(\boldsymbol{x})=\mathbf{2 x} \boldsymbol{- 4}$ over the interval $[-1,3]$.

