Name:_____

Date: _____

Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

** Domain (x-values) ** Values it crosses the vaxis) ** Asymptote: Range (y-values) ** Y-int (where it crosses the vaxis) ** Asymptote (and of Functions) **	What you need to know & be able to do	Things to remember	Problem		
$x \to \infty, f(x) \to \underline{\hspace{1cm}}$		values) Range (y-values) Y-int (where it crosses the y-axis) X-int (where it crosses the x-axis) Asymptote Rate of Change Increasing/ Decreasing	$f(x) = (2)^{x} - 3$ 2. Graph the function $y = -3x + 6$ 3. Graph the function	Domain: Range: RoC from $x = 0$ to 1: X-Int: Dec: End behavior: $x \to -\infty$, $f(x) \to -$ $x \to \infty$, $f(x) \to -$ What type of function is this? Domain: Range: RoC from $x = 0$ to 1: X-Int: Y-Int: Inc: Dec: End behavior: $x \to -\infty$, $f(x) \to -$ What type of function is this? Domain: Range: Asymptote: RoC from $x = 0$ to 1: X-symptote: RoC from $x = 0$ to 1: X-Int: Y-Int:	

GSE Algebia i			Utili 3 Study Guid	
Comparing Functions	 Starting value= Function Linear y = mx + b Exponential y = ab^x 	 4. Taylor and Jordan are competing to see who can run the most during a week. On Day 1, they both run 3 miles. Taylor then increases his mileage each day by 2 miles. Jordan runs 1.5 times as many miles each day. Write the rule for the sequence that represents how many miles each runner will run in terms of days. Taylor: Jordan: Who will reach 10 miles first? 5. Two companies are offering memberships for buying music. iTunes offers a \$20 a month membership with a registration fee of \$100. Amazon offers a \$40 a month membership with a registration fee of \$60. Write an equation for each company. iTunes: Amazon: Compare the rates of change and the y-intercepts. 		
Determine whether a function is even, odd, or neither	 Graphically: A function is even when it is symmetrical about the y-axis A function is odd if you can rotate it 180 degrees and have the same graph (it also must go through the origin) Algebraically: A function is even if ALL the exponents are even 	6. Determine whether the function is even, odd or neither.	7. $f(x) = 2x^{3}$ $f(x) = -x^{3} + x + 5$ $f(x) = x^{4} + 3x$ $f(x) = x^{2} - 9$	

• A function is odd

exponents are

constants have

if ALL the

x0-- EVEN

odd • Remember

O3L / ligobla i			orin 3 310dy Oold
		Write the equation for the	
		sequence	Find the indicated term:
	Arithmetic	8) 12, 16, 20, 24	
	 Common 		12) $A_n = 6n + 5$
	difference, add		Find a11
	or subtract by		
	the same		
	number	9) 120, 60, 30, 15	
Sequences:	• $A_n = dn + a_0$		
	OR		
Arithmetic and	$A_n = a_1 + d (n - 1)$		12) A = 1/ / 4 \n=1
<u>Geometric</u>	Geometric	10\21 18 15 12	13) $A_n = \frac{1}{2} (4)^{n-1}$ Find a_{15}
	• Each term is	10) 21, 18, 15, 12	FIND 015
	multiplied by a		
	common ratio		
	Commontano		
	• $A_n = a_1 (r)^{n-1}$	11) 12, 24, 48	
)	, .2, 2.,	

The tables below each represent a different function. Use these functions to answer questions 14-19.

f(x)

x -2 -1 0 1 2

f(x) 9 5 1 -3 -7

			g(x)		
×	-2	-1	0	1	2
f(x)	0.25	1	4	16	64

		h(x)		
×	-2	-1	0	1	2
f(x)	5	3	3	5	9

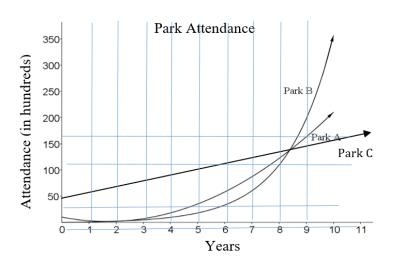
_______14) What is the equation of the exponential function?

_______15) Be able to pick the quadratic equation from multiple choice

_______16) What is the equation of the linear function?

_______17) If m(x) = g(x) - 4, what is m(x)?

_______18) Which function has a common difference?


_______19) Which function has a common ratio?

Directions: Use the graph to the right to select the best answer for questions 20-22.

_____ 20) After how many years does Park A's attendance exceed park C.

_____21) Which park has the highest attendance the 8th year?

_____ 22) When do all 3 parks have the same attendance?

Rate of Change:

23) If $k(x) = 4^{x+3} + 2$, what is the average rate of change for the interval $-2 \le x \le 1$?

24) What is the average rate of change over the interval [3, 7] for $f(x) = (x-3)^2 + 4$.

25) Find the rate of change for g(x) = 2x - 4 over the interval [-1, 3].