Name:4	eu	
Date:_		

Exponential Functions Unit Review

Skill	Things to	Examples		
,	remember			
Determine if representations are exponential. Explain why or why not	Exponential	CI. Tell if the following are exponential decay, growth, refeleted decay, or reflected growth	b. Determine if the equations and linear or exponential: a. y = 3x - 4 b. y = 2x - 3 c. y = 62x	
		reflected growth		
2. Determine if a function is exponential growth or decay and explain why.	0 < b < 1: Decay b > 1: Growth	a. $y = .75\left(\frac{3}{2}\right)^x$ growth b 7	b. $y = \left(\frac{1}{2}\right)^x$ $decay$ $0 < b < 1$	
		c. Y = 3(2)x growth b71	d. Y=3(15)x decay 0 < b < 1	

3. Graph an
exponential
function.

$$y = ab^x$$

Create a table with values and graph.

Remember to represent the asymptote as a dotted line.

b. Graph:
$$f(x) = 3 \cdot 2^{x}$$

4. Describe the transformations
$$f(x) = a(b)^{x-h} + k$$

of an

exponential

function.

k moves the function up (+) and down (-)

h moves the function left (+) and right (-)

The new asymptote is the line y = k.

a. Given the function
$$f(x) = 2^x$$
 write a new equation after a transformation of left 7 and up 3.

$$g(x) = -2^{x-9}$$

c. Describe the transformation
$$h(x) = 10^x$$
 to $k(x) = 4(10)^{x+1}-5$.

- stretch of 4

- Left 1 - down 5

-down 3

5. Determine characteristics of exponential functions.

a.

Domain: (-@, @)

Range: (0, 0)

x-Intercept:

None

y-intercept: (0,1)

Interval of Increase: Now

Interval of Decrease: (---)

Asymptote: y = 0

End Behavior:

as
$$x \to -\infty$$
, $f(x) \to \underline{\hspace{1cm}}$
as $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$

ROC over interval -2 to 0:

$$M = \frac{4-1}{-2-0} = \frac{3}{2}$$

b.

Domain: (-4, 5)

Range: (2, 2)

x-Intercept: None

y-intercept: (0.6)

Interval of Increase: (-4, p)

Interval of Decrease: None

Asymptote: y=2

End Behavior:

as
$$x \to -\infty$$
, $f(x) \to 2$
as $x \to \infty$, $f(x) \to 2$

ROC over interval -1 to 0:

1_

6. Determine the y-intercept and asymptote from an equation	You can always substitute 0 in for x to find a y-intercept Asymptote: y = k No 'k' value, the	a. Determine the y-intercept and asymptote of the function $y = 3(2)^x$. $y = 0$ (asymptote)	asymptote of the function $y = 4(\frac{1}{2})^x - 2$.
	asymptote is y = 0.	y = 0 (asymptote) (0.13) Y-int (a-value)	(0,2)
7. Determine	(1+r) and (1-r)		
the growth/decay factor and Rate.	(1 + r) and (1 - r) represent the growth and decay factors	a. $y = 3(1.25)^x$ Determine if the function is growth or decay:	b. $y = 2(.84)^x$ Determine if the function is growth or decay: $AeCay$
		Factor: 1.25	Factor: $.84$ Rate: $ -V=.94 $
	- -	V= .25	r=016

1				
į.	8. Applications of exponential	$y = p(1+r)^{t}$ $y = p(1-r)^{t}$	a. Luke Duke deposits \$2000 into a bank account that pays 5% interest compounded monthly.	b. The value of the Barbie Drea House is \$125,000. This house is i a prime location and
	functions.	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	Find the balance in the account after 4 years.	appreciates (increases in value) at a rate of 7% per vear. How much will the Barbie Dream
		8	Equation: $A = 2000 \left(1 + \frac{.05}{12}\right)^{2.4}$	House be worth in 5 years?
			7- 2000 (1+ 12)	Equation:
			A=\$2441.79	M=P(1+r) y=125,000(1+.07)
			Solution: \$2441.79	Solution: \$175,318.97
			c. A certain radioactive element	d. Michael is offered two jobs –
			Was 32 ounces, how much will	Job A, which offers him a starting salary of \$20,000 a year with a 5% raise each year he works there and Job B, which offers him a
			Equation: $y = P(1-x)^{\frac{1}{2}}$	starting salary of \$25,000, but on a 3% raise each year. Michael plans to work to work at the job
			y=32(121)2	for 7 years. Which job should he pick and why?
	·		Solution: 1.89 ounces	Job A Job B
-		·	l v	J= 20,000/1+.05) y=25,000/1+.05
				\$28142) \$ 3074k
E	2. Solving exponential	 Must have SAME base 	• $5^{3x+1} = 5^{x-9}$	$3^{x-8} = 9^x$
F	unctions	Set exponents(don't forget	3K+1=K-9 $2X=-10$	3x-8=(32)x
		to distribute) Solve for x	X=-5	$\times -8 = 2 \times$ $\times -8 = 2 \times$
	,		$4^{3x} = 8^{x+1}$ $(2^2)^{3x} = (2^3)^{x+1}$	$4x+8 = \left(\frac{1}{4}\right)^{x-18}$
			bx = 3x + 3	(22)4X+B = (2-2)X-1B
			3x = 3	8x+16 = -2x+36
			(x=1)	10 X = 20
		•		

10. Geometric Sequences

Geometric Explicit Formula: $a_n = a_1(r)^{n-1}$

Geometric Recursive Formula $a_n = a_{n-1}(r)$ Tell if the following is Geometric or Arithmetic

a. 8, 5, 2, -1... Anthretic d=-3

b. 2, 6, 18, 54... Geometric v=3

Create an Explicit formula and then use it to find a certain term.

c. -81, 27, -9, 3, -1

Explicit formula: $Q_n = -81(-3)^{-1}$

d. 4, 12, 36, 108,...

Explicit formula: $a_n = 4(z)^{n-1}$

Joe sells coffee at his work place and has recorded his weekly sales below.

week	Sales	\$1,23
]	50.30	
2	62.10	
3	76.67	<u> </u>

Explicit formula: $\Omega_n = 50.30 \left(1.23 \right)^n$

If the same trend continues, how much will he make in week 7? $A_{n} = 50$, 30/1.23

(a, = \$ 174.18)