Graphing Quadratics 3D Packet 1

Name: _____

Name:	
Date:	

Quadratic Functions

Standard Form: $f(x) = ax^2 + bx + c$ Vertex Form: $f(x) = a(x - h)^2 + k$ Intercept Form: f(x) = a(x - p)(x - q)

Key Components of a Quadratic Function Axis of symmetry *y*-intercept *x*-intercept *x*-intercept Vertex

6.4 Guided Notes – Graphing Quadratic Functions

Name: ______ Period: ____

Objective: I can graph quadratic functions in standard form, vertex form, and factored form.

The graph of a quadratic function is called a ______. There are _____ forms of quadratic equations:

$$f(x) = ax^2 + bx + c$$

$$f(x) = a(x-h)^2 + k$$

$$f(x) = a(x - p)(x - q)$$

• If ______, the graph opens ______.

If ______ is _______, the graph opens ______.

• All quadratic equations have a _____ which is the turning point of the graph.

Quadratic graphs are symmetrical across the ______, which runs through the

_____. Formula:

The y-intercept always has an x-value of _____. For a parabola, the y-intercept will be the point (,)

A quadratic function crosses or touches the x-axis ________, _______, or ________, times.

In this graph:

Vertex:

Axis of symmetry:

Y-intercept is:

X-intercepts are: _____

Graphing in STANDARD FORM $-f(x) = ax^2 + bx + c$

EXAMPLE - Graph the function: $f(x) = 4x^2 - 8x + 1$

To find the axis of symmetry:

$$x = -\frac{b}{2a} = ----=$$

To find the vertex, plug _____ back into the equation. $f(\underline{\hspace{1cm}}) = 4()^2 - 8() + 1 = $.

Key Features:				
a =	b =	c =		
The parabola	UP or DOWN			
The parabola has a MAX or MIN				
The axis of symmetry at $x = $				
Vertex at (٠,)		
y-intercept =	(, ')		
point = (,	')		

YOU TRY - Graph the function: $f(x) = -\frac{1}{2}x^2 + 2x - 1$

Key Features:					
a = l	o =	c = _			
The parabola will open UP or DOWN					
The parabola has a MAX or MIN					
The axis of symmetry at $x = $					
Vertex at (,)		
y-intercept = (,)		
point = (,)			

Graphing Quadratic Functions in Standard Form Worksheet #1

Name:______ Period_____ Date _____

Directions: Graph these equations. Identify the axis of symmetry, vertex, and y-intercept.

1.)
$$y = x^2 - 2x - 3$$

2.)
$$y = 3x^2 + 12x + 9$$

3.)
$$y = -x^2 + 6x - 4$$

4.)
$$y = -4x^2 + 8$$

6.)
$$y = 2x^2 - 2x - 5$$

Graphing in FACTORED FORM -f(x) = a(x-p)(x-q)

p, q are the ______ also called the _____ and the axis of symmetry can be found using $\frac{p+q}{2}$

Find the x-intercepts and the axis of symmetry:

1.
$$f(x) = -3(x-1)(x+2)$$

2.
$$f(x) = (x+3)(x+3)$$

x-ints: (,) a.o.s

$$f(x) = -3(x-1)(x+2)$$
2. $f(x) = (x+3)(x+3)$
3. $f(x) = -0.5(x-7)(x+1)$
x-ints: (,) a.o.s: x-ints: (,) a.o.s: (,)

EXAMPLE - Graph the function: f(x) = -2(x-3)(x-2)

Key Features:	·
a =	
The parabola will open UP or	r DOWN
The axis of symmetry at $x = $	
Vertex at () .
	(

YOU TRY - Graph the function: f(x) = (x + 1)(x - 4)

Key Features: The parabola will open UP or DOWN The axis of symmetry at x =____ Vertex at (x-intercepts = (,) (, y-intercept = (point = (

NOTE: For all quadratics, if you can find the vertex and one point, you can sketch the graph.

Practice Worksheet: Graphing Quadratic Functions in Intercept Form

For #1-6, label the x-intercepts, axis of symmetry, vertex, y-int., and at least one more point on the graph.

1]
$$y = \frac{1}{2}(x+4)(x-2)$$

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=_____

Vertex: (____, ____)

y-intercept: (0,)

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=

Vertex: (,)

y-intercept: (0,____)

2]
$$y = -\frac{1}{2}x(x-8)$$

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=____

Vertex: (____, ____)

y-intercept: (0,____)

$$5] y = 4(x+2)(x+1)$$

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=____

Vertex: (____, ____)

y-intercept: (0,____)

$$3] y = (x+2)(x-2)$$

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=____

Vertex: (____, ____)

y-intercept: (0,____)

6]
$$y = -(x-3)(x-3)$$

x-intercepts: (_____, 0) (_____, 0)

Axis of Symmetry is x=_____

Vertex: (____, ____)

y-intercept: (0,____)

Write the equation of the parabola in intercept form.

$$p = q = x = y =$$

Find a.

$$p = q = x = y =$$

Find a.

$$p = q = x = y =$$

Find a.

Write the equation.

Write the equation.

Write the equation.

$$p = q = x = y =$$

Find a.

p = q = x = y =

Find a.

p = q = x = y =

Find a.

Write the equation.

Write the equation.

Write the equation.

Write the quadratic function in standard form.

13]
$$y = \frac{1}{2}(x+4)(x-2)$$

14]
$$y = -(x-1)(x-1)$$

15]
$$y = 3(x+3)(x+1)$$

Graphing VERTEX FORM $-f(x) = a(x-h)^2 + k$ The vertex is always the values of (h,k)

Find the vertex and "a":

1.
$$f(x) = 2(x-2)^2 + 4$$

vertex: a:

2.
$$f(x) = -4(x + 3)^2 - 5$$
 3. $f(x) = -(x - 1)^2 - 2$ vertex: a: vertex: a:

3.
$$f(x) = -(x-1)^2 - 2$$

vertex: a:

EXAMPLE - Graph the function: $f(x) = 2(x-3)^2 - 4$

Key Features:		
a =		
The parabola will op-	en UP d	or DOWN
The parabola has a	MAX o	r MIN
The axis of symmetry	y at $x = _{__}$	
Vertex at (,)
y-intercept = (,	·)
point = (,)

YOU TRY - Graph the function: $f(x) = -(x+5)^2 + 2$

Key Features: a = _____ The parabola will open UP or DOWN The parabola has a MAX or MIN The axis of symmetry at x =Vertex at (,) y-intercept = (point = (

Graphing a Parabola from Vertex Form Worksheet

Graph each function.

1.
$$y = (x-1)^2 + 2$$

Vertex = _____

Is the vertex a max or min?

3.
$$y = -3(x+7)^2 - 8$$

Vertex = _____

Is the vertex a max or min?

2.
$$y = 2(x-2)^2 + 5$$

Vertex = _____

Is the vertex a max or min?

4.
$$y = (x-5)^2 - 3$$

Vertex = ____

Is the vertex a max or min?

5.
$$y = -(x-1)^2 + 4$$

Vertex = _____

Is the vertex a max or min?

6.
$$y = 2(x+1)^2$$

Vertex = _____

Is the vertex a max or min?

Write the equation of each parabola in vertex form.

7. _____

8.

9.

- 10.) Write the vertex form of a quadratic equation.
- 11.) What does changing the "a" variable do to the graph of a quadratic?
- 12.) If "h" is positive how does the parabola move? Negative?
- 13.) What does changing the "k" variable do to the graph of a quadratic?
- 14.) What conclusion can you make about the variables h and k together?

Graph each of the following quadratic functions. Identify the appropriate characteristics.

1.
$$f(x) = 2(x+2)(x+4)$$

x-Intercept(s):

Vertex:

Axis of Symmetry: y-intercept: _____

2.
$$g(x) = -(x-3)^2 + 4$$

x-Intercept(s): _____

Vertex:

Axis of Symmetry:

y-intercept:

$$3. \quad f(x) = 2x^2 - 12x + 18$$

x-Intercept(s): _____

Vertex: ______
Axis of Symmetry: _____

y-intercept: _____

