CHAPTER 8 EXTRA PRACTICE PYTHAGOREAN THEOREM, SPECIAL RIGHT TRIANGLES, TRIG. RATIOS

- 1. At a point on the ground 100 ft. from the foot of a flagpole, the angle of elevation of the top of the pole contains a 31 degree angle. Find the height of the flagpole to the nearest foot.
- 2. Find the length of the side of a square whose diagonal is 6.
- 3. From the top of a lighthouse 190 ft. high, the angle of depression of a boat out at sea is 34 degrees. Find to the nearest foot, the distance from the boat to the foot of the lighthouse.
- 4. The congruent sides of an isosceles triangle are each 15 in. and the base is 24 in. Find the length of the altitude drawn to the base.
- 5. If $\cos A = \sin 30^{\circ}$, then angle A measures how many degrees?
- 6. Find the length of the diagonal of a square whose side is 6 in. in length.
- 7. Find to the nearest degree the measure of the angle of elevation of the sun if a post 5 ft. high casts a shadow 10 ft. long.
- 8. The lengths of the bases of an isosceles trapezoid are 8 and 14 and each of the bases angles measures 45 degrees. Find the length of the altitude of the trapezoid and the length of the legs.
- 9. In triangle ABC, angle C is a right angle, AC = 5, BC = 12.

b) Find the tan B. 5/12

c) Find sin B. 5/13

d) Find cos B. 12/13

e) Find the measure of angle B to the nearest degree. 23

$$AO = \frac{3}{3}$$

$$AB = \frac{1}{3}$$

$$OB = \frac{2}{3}$$

$$OC = \frac{2\sqrt{2}}{3}$$

$$OD = \frac{4\sqrt{2}}{3}$$

$$OE = \frac{8\sqrt{6}}{3}$$

 $\frac{472}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{470}{3}$

160

11. How many feet of walking would a person save by cutting across the vacant lot instead of taking the sidewalk around the outside edge?

2. How many inches long must each side of a cubical box be if the distance from one corner is 12 in.? Answer with an expression in simplest form.

$$3x^{2} = 12^{2} = 144 \quad x = 4\sqrt{3} \text{ in}$$

$$x^{2} = 48$$

$$tan 34 = \frac{190}{x}$$

Coo A = .5

$$A = \cos^{-1}(.5)$$

$$A = \cos^{-1}(.5)$$

$$A = \cos^{-1}(.5)$$

$$\tan x = \frac{5}{10}$$

$$X = Ion^{-1}\left(\frac{5}{10}\right)$$

alt = 8 \(\frac{3}{3} \)

what would the lateral edge be?
$$5^2 + 13^2 = x^2$$

12 d= l+w+ h2

$$d^{2} = 8^{2} + 8^{2} + 12^{2} = 64 + 64 + 144$$

$$= 272 = 16 \times 17$$

$$d = 4\sqrt{17}$$

 $(7x)^2 + (24x)^2 = 100^2$ 49 x2 + 576x2 = 10000

625 x2= 10000

$$\chi^2 = \frac{10000}{625} = 16$$

length = 96

width = 28

400 tan 20= y= 145.588 tan 22 = W

400

tan 20 = 400

400 tan 22 = W=161.610

pole = 16 ft

 $(3x)^2 + (4x)^2 + (5x)^2 = (200\sqrt{2})^2$ $9 \times^2 + 16 \times^2 + 25 \times^2 = 80000$ 50x2 = 80000

$$X^{2} = 1600$$
 $X = 40$

demensions are 120 × 160 × 200

$$l^2 + w^2 + h^2 = d^2$$

$$\frac{612}{13} \cdot \frac{13}{13} = \frac{616}{3} = 216$$