Honors Geometry
Factoring Review (Day 3-4)
Solving Quadratic Equation, Notes and Examples

First off, we don't solve quadratic equations just for the fun of it. There is a reason why we are solving.
We need to start with what a quadratic equation is. A quadratic equation is an equation that has a degree of
\qquad meaning that the largest exponent that a variable can have is \qquad . A quadratic equation usually looks like this: $a x^{2}+b x+c=y$

Like all equations a quadratic equation is a picture of something. $Y=m x+b$ is the picture of a line. A quadratic equation is the picture of a parabola.

What we are finding when we solve a quadratic
equation is the x-intercepts of the parabola. Parabolas can open up or down

and often times will have two solutions. However a parabola can have one solution (x-intercept)

or even no solutions.

We spend a lot of time learning factoring because that is the easiest and usually quickest way to solve a quadratic equation. Important: Since we are really finding x-intercepts we must set any quadratic equal to zero. (why? What variable are we making 0?)

Then factoring kind of makes sense.

Example:

$$
\begin{aligned}
& x^{2}-x-6=0 \\
& (x-3)(x+2)=0 \\
& x-3=0 \\
& x=3
\end{aligned} \quad x+2=0 \quad \text { (why does this step make sense?) }
$$

In class examples
Solve by Factoring
1.) $x^{2}-64=0$
2.) $x^{2}-6 x-16=0$
3.) $x^{2}+3 x=40$
4.) $2 x^{2}+3 x+1=0$
5.) $x^{2}-100=0$
6.) $x^{2}+6 x=0$
7) Explain why $\mathbf{x}^{\mathbf{2}}=\mathbf{- 8 1}$ does not have a solution. This also means what about the graph of this parabola? (think x-intercepts)
8) Finally a common mistake I see (very unfortunately) with even my older kids. What is wrong with the following and why? (meaning PLEASE don't ever do it)
$x^{2}-x-6=4$
$(x-3)(x+2)=4$
$x-3=4$
$x+2=4$
$\mathrm{x}=7$
$\mathrm{x}=2$

