

Find the final amount for each investment.

1. Invested \$1300 earning 5% interest per annum compounded annually for 10 years.

A=1300 (1+ =05)

\$2117,56

2. Invested \$850 earning 4% interest per annum compounded annually for 6 years.

A=850 (1+ 09)

\$ 1075.52

3. Invested \$720 earning 6.2% interest per annum compounded semiannually for 5 years.

A=720/1+ .062

\$977.06

4. Invested \$1100 earning 5.5% interest per annum compounded semiannually for 4 years.

A = 1100 (1+ -055) &

\$ 366.102

5. Invested \$300 earning 4.5% interest per annum compounded quarterly for 3 years.

A = 300 (1+045) 12

\$ 343.10

6. Invested \$1000 earning 6.5% interest per annum compounded guarterly for 2 years.

 $A = 1000 (1 + \frac{.065}{4})^6$ \$11.37.14

7. Invested \$5000 earning 6.3% interest per annum compounded monthly for 10 years.

\$9372.59

8. Invested \$2000 earning 5.5% interest per annum compounded daily for 3 years.

A = 2000 (1+ · 055 (265.3)

\$ 2358.76

9. Bill and Susan's parents want to open a college savings account for their grandchild. They have found an investment that pays 8% annual interest, compounded monthly. How much money will they need to invest in order to have \$60,000 in the account 18 years after their grandchild is born? Round your answer to the nearest dollar.

60,000 = a (1+ 008 (18-12)

* Solve For a

a= \$14,283-76

10. The half-life of plutonium-238 is about 88 years. The amount A (in grams) of radioactive plutonium-238 that remains in a sample after t years is given by A = 10(.5)88

If the original amount of plutonium-238 is 10 grams, how much of the sample will remain

a) after 88 years?

A = 10/05 88 5 grams

b) after 176 years?

A=10(.5) 788 [2.5 grams

after 100 years?

A=10(05)