Georgia Department of Education

Georgia Standards of Excellence Framework

Section 1: Area models for multiplication

1. If the sides of a rectangle have lengths x + 3 and x + 5, what is an expression for the area of the rectangle? Draw the rectangle, label its sides, and indicate each part of the area.

$$A = lW$$

$$A = (X+3)(X+5) \quad Foll$$

$$X^2 + 8X + 15$$

2. For each of the following, draw a rectangle with side lengths corresponding to the factors given. Label the sides and the area of the rectangle:

a.
$$(x+3)(x+4)$$

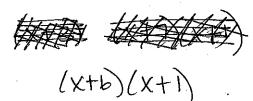
c.
$$(x-2)(x+5)$$

b.
$$(x+1)(x+7)$$

 $X^{2} + 8x + 7$

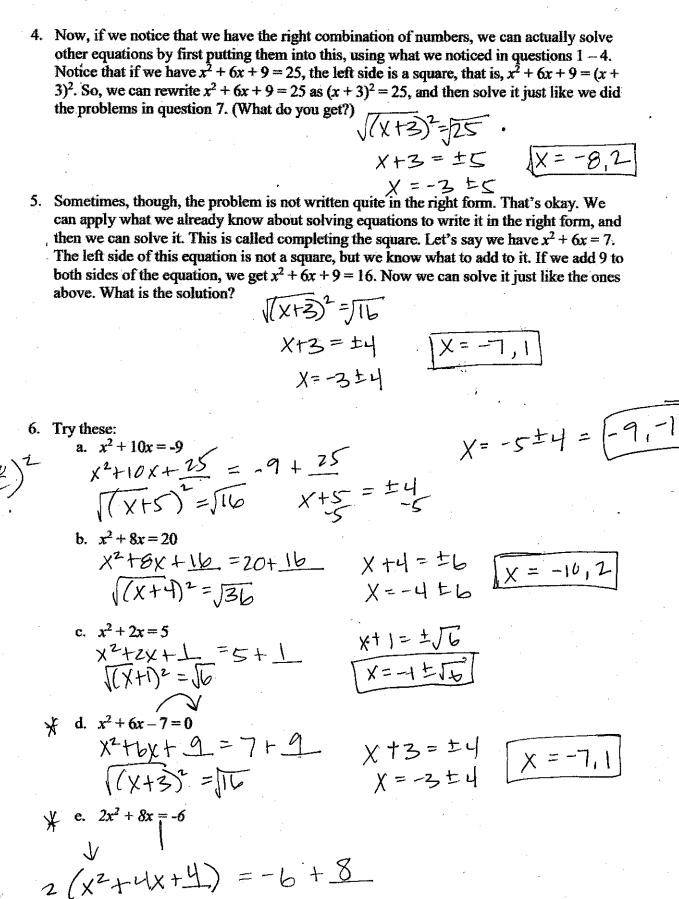
d.
$$(2x+1)(x+3)$$

 $2x^2 + bx + x + 3$


Section 2: Factoring by thinking about area and linear quantities $2x^2 + 7x + 3$. For each of the following, draw a rectangle with the indicated area. Find appropriate factors to label the sides of the rectangle.

1.
$$x^2 + 3x + 2$$

$$(x+2)(x+1)$$


2.
$$x^2 + 5x + 4$$

3.
$$x^2 + 7x + 6$$

4.
$$x^2 + 5x + 6$$
 $(X+3)(X+2)$

Section	on 3: Completing the square
1.	What number can you fill in the following blank so that $x^2 + 6x + 4$ will have two equal factors? What are the factors? Draw the area and label the sides. What shape do
	you have?
	square (X+3) (X+3) (X+3) 3.
2.	What number can you fill in the following blank so that $x^2 + 8x + \frac{1}{112}$ will have two
	equal factors? What are the factors? Draw the area and label the sides. What shape do you have?
	1 (x+4) 1 y=
3.	What number can you fill in the following blank so that $x^2 + 4x + \bot$ will have two equal factors? What are the factors? Draw the area and label the sides. What shape do
	anna famaig
	(X+2) Square (X+2)
Л	<u> </u>
7.	What would you have to add to $x^2 + 10x$ in order to make a square? What could you ad to $x^2 + 20x$ to make a square? What about $x^2 + 50x$? What if you had $x^2 + bx$?
X2+10	x+(25) x2+20x+(00) x2+50x+(625) 1 (b)
	4: Solving equations by completing the square
	Solve $x^2 = 9$ without factoring. How many solutions do you have? What are your solutions?
	$\sqrt{\chi^2} = 9$ $ \chi = \pm 3 $
	Use the same method as in question 5 to solve $(x+1)^2 = 9$. How many solutions do you
	have? What are your solutions? $X+1=\pm 3$ $X=-4,2$
	V-1'+2
_	* Sauriors
	In general, we can solve any equation of this form $(x+h)^2 = k$ by taking the square root of both sides and then solving the two equations that we get. Solve each of the following:
	a. $\sqrt{(x+3)^2} = \sqrt{16}$ $X+3=\pm 1$ $X=-3\pm 1$ $X=-7,1$
	b. $\sqrt{(x+2)^2} = 5$
· .	$X+2=\pm\sqrt{5}$ $X=-2\pm\sqrt{5}$
	$X = -2 \pm \sqrt{5}$
	c. $\sqrt{(x-3)^2} = \sqrt{4}$
	$X-3 = \pm 2$ $X = 1,5$
	d. $(x-4)^2 = 3$
	$X - 4 = \pm \sqrt{3}$ $X = 4 \pm \sqrt{3}$

x+2===[

X = -2 ± 1

|X = -3, -1|

V(X+2)2=11