For any event $A, P(A)+P\left(A^{\prime}\right)=$ \qquad 1 \qquad , that is $P\left(A^{\prime}\right)=$ \qquad - $P(A)$.

1. Suppose that an event A has probability of $\frac{3}{8}$. What is $P\left(A^{\prime}\right)$? \qquad 5/8 \qquad
2. Suppose that the probability of snow is 0.58 , What is the probability that it will NOT snow? . 42

If A and B are mutually exclusive events, then $P(A$ or $B)=P(A)+P(B)$. and
If A and B are inclusive events, then $P(A$ or $B)=P(A)+P(B)-P(A \cap B)$.

A card is chosen from a well-shuffled deck of 52 cards.
What is the probability that the card will be:
3. a king OR a queen? \qquad 8/52 \qquad
4. a red jack OR a black king? \qquad 4/52 \qquad
5. a face card $O R$ a card with a prime number? \qquad 30/52 \qquad
6. an even card $O R$ a red card? \qquad 36/52
7. a spade or a jack? \qquad 12/52 \qquad

A spinner number 1-10 is spun. Each number is equally likely to be spun.
What is the probability of spinning:
8. an even number OR a power of three? \qquad 7/10 \qquad
9. an odd number OR a power of three? \qquad 6/10 \qquad
10. a number less than $8 O R$ a divisor of 15 ? \qquad 7/10 \qquad
11. Look at the solution to the following problem and see if you can find the error (there definitely is a mistake). Correct the error to find the right answer.

$$
P(\text { drawing an ace } O R \text { a black card })=P(\text { ace })+P(\text { black })=\frac{4}{52}+\frac{26}{52}=\frac{30}{52}=\frac{15}{26}
$$

Since there are 2 black aces you have to subtract those so that those cards are not chosen twice. So the correct answer is: $4 / 52+26 / 52-2 / 52=28 / 52$. (which reduces to $7 / 13$)

Make sure you can use a table to find probabilities. Below is a table of how many teams were picked correctly on a bracket on the first day of the NCAA tournament.

Games picked correctly	Probability	Games picked correctly	Probability
3	.02	9	.12
4	.06	10	.07
5	.13	11	.03
6	.14	12	.02
7	.17	13	.02
8	.21	14 or more	.01

Find the following probabilities
12. P(less than 8 games)
\qquad .52 \qquad
15. $\operatorname{Pnot} 14$ or more games)
\qquad .99
13. $P(10$ or 11 games)
\qquad .10 \qquad
14. P (more than 12 games)
\qquad .03 \qquad
\qquad .51 \qquad

